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Estimation of maintenance costs of a pipeline for a U-shaped 
hazard rate function in the imprecise setting

Estymacja kosztów eksploatacyjnych rurociągu dla U-kształtnej 
funkcji intensywności uszkodzeń przy nieprecyzyjnym podejściu

In this paper, we discuss imprecise settings for an evaluation of the maintenance costs of a water distribution system (WDS). Mo-
ments of failures of pipes are modelled using a newly proposed three-piece convex hazard rate function (HRF) for which number 
of previous failures is taken into account, too. Both fuzzy sets and shadowed sets are used to model the impreciseness of important 
parameters of this HRF and the costs of maintenance services. Contrary to more classical and widely-used approaches to cost 
analysis (i.e. a constant yield or nominal value of money), a strictly stochastic process (i.e. the one-factor Vasicek model) of an 
interest rate is assumed in the analysis of maintenance costs. This approach models future behaviour of the interest rate (i.e. the 
future value of money) in a more realistic way. Respective algorithms together with exemplary results of numerical simulations for 
two setups, which are related to fuzzy and shadowed sets, are also provided.

Keywords:	 water distribution system, maintenance costs, convex hazard rate function, Monte Carlo simula-
tions, fuzzy sets, shadowed sets.

W niniejszym artykule omawiamy nieprecyzyjne podejścia do problemu obliczenia kosztów eksploatacji systemu dystrybucji wody 
(WDS). Czasy uszkodzeń rur modelowane są z wykorzystaniem nowo zaproponowanej trzyczęściowej wypukłej funkcji inten-
sywności uszkodzeń (hazard rate function, HRF) dla której brana jest pod uwagę również liczba wcześniejszych uszkodzeń. Do 
modelowania nieprecyzyjności istotnych parametrów tej HRF oraz kosztów działań serwisowych są wykorzystywane zarówno 
zbiory rozmyte jak i zbiory cieniowane. W przeciwieństwie do bardziej klasycznych i szeroko wykorzystywanych podejść do analizy 
kosztów eksploatacji (tzn. stałej stopy procentowej lub wartości nominalnej pieniądza), założono ściśle stochastyczny proces (tzn. 
jednoczynnikowy model Vasicka) dla stopy procentowej. Podejście to modeluje przyszłe zachowanie stopy procentowej (czyli przy-
szłej wartości pieniądza) w bardziej realistyczny sposób. Zaprezentowano również odpowiednie algorytmy wraz z przykładowymi 
wynikami symulacji numerycznych dla dwóch zestawów parametrów, związanych ze zbiorami rozmytymi i cieniowanymi.

Słowa kluczowe:	 system dystrybucji wody, koszty eksploatacji, wypukła funkcja intensywności uszkodzeń, symu-
lacje Monte Carlo, zbiory rozmyte, zbiory cieniowane.

1. Introduction

To deliver water of desirable quality and in necessary quantity, 
various maintenance services (like repairs and replacements of con-
nections) for a water distribution system (WDS) are necessary. The 
literature devoted to different aspects of these problems, like model-
ling reliability of a WDS or a calculation of costs of the maintenance 
services, is abundant. We refer the reader to some detailed and inter-
esting reviews, e.g., [16, 29, 30]. The articles related to the problem 
of maintenance of a WDS are really diversified, too. Some of them 
discuss hydraulic and physical characteristics of parts of a WDS (see, 
e.g., [5, 18]), other focus on a “macro-management” of a WDS (see, 
e.g., [22]) or its ”micro-management” scale (see, e.g., [1]), or propose 
the application of artificial neuronal nets in a monitoring system (see, 
e.g., [23]) or even artificial intelligence (see, e.g., [24]).

In this paper, we discuss a simulation approach to the estimation 
of the maintenance costs related to repairs and replacements of pipes. 
Usually, to calculate these costs in an appropriate manner, a relatively 
long-time horizon has to be considered. Such a time interval covers 
20, 50 or even 60 years (see, e.g., [12]). But in most of the papers, a 
constant rate for money flow or even nominal costs are considered, 
which is rather counter-intuitive, because one unit of money, which is 
paid now, and the same unit in 50-60 years, are not equal. Moreover, 

the assumption about a constant discount factor is too strong and un-
realistic for the mentioned long time horizons. Therefore, a variable 
interest rate should be considered in a more real-life approach. Then, 
in this paper, for modelling such variable interest rates we apply the 
one-factor Vasicek model.

In the literature, many models of intensities of malfunctions of 
parts of a WDS have been proposed. Some of them are related to 
physical aspects of a pipe and are described by formulas (like the 
Hazen-Williams equation, see, e.g., [12]). Other models are based on 
Markov or semi-Markov processes (see, e.g., [13, 17, 25]) or are de-
scribed using a hazard rate function (HRF, see, e.g., [30] for a com-
prehensive review). In this paper, we propose a new kind of HRF 
that describes three important stages of the “life” of a pipe and takes 
into account an increasing deterioration of a material of a pipe. The 
proposed HRF completely fulfils requirements formulated by some 
authors (see, e.g., [30]). It can be easily adapted to real-life data. 
Moreover, the respective generation algorithm is very efficient in the 
Monte Carlo simulations which are widely used in modelling com-
plex systems (see, e.g., [3]).

This paper can be seen as further development of ideas proposed 
earlier in [25, 26], as some new concepts are also considered. Thus, 
our contribution to problems considered in this paper is five-fold.
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First, a new, more general hazard rate function, which describes 
the intensities of malfunctions of pipes in a WDS, is introduced. Con-
trary to other HRFs, which were previously discussed in the litera-
ture, it has some appealing features. It is U-shaped and it models three 
important states of a connection: a starting burn-in period (immedi-
ately after a repair or an installation of a pipe, when the intensity of 
malfunctions is a decreasing function), a middle stable state (when 
initial problems with a connection have passed, so the level of failures 
is relatively low), and a later wear-out period (when the intensity of 
malfunctions is an increasing function, with higher values than dur-
ing its stable state). This HRF also depends on number of previous 
repairs of the given pipeline, so an increasing deterioration, which is 
caused by recurring stresses related to repairs, can be taken into ac-
count. Moreover, a numerically efficient algorithm for the generation 
of random times of failures for this HRF is also provided. It leads 
us to a direct application of the Monte Carlo (MC) simulations to 
simulate the behaviour of the whole WDS. Contrary to [26], the newly 
proposed HRF has three, instead of only two states (i.e. it is U-shaped 
instead of its previous V-shaped version).

Second, apart from the mentioned HRF, we use a special random 
distribution with a decreasing intensity function and finite support to 
model times of services related to malfunctions of a WDS (i.e., repairs 
and replacements of pipes). A numerically efficient algorithm for the 
generation of random times of these services is provided, too. There-
fore, the MC approach can be used to simulate the respective values 
of the mentioned times.

Third, almost all of the parameters of the model (apart from these 
related to the variable interest rate, an unconditional replacement age, 
and time horizon for the Monte Carlo simulations) are fuzzified to 
express our limited information about their real values. Moreover, we 
provide a general framework for using different kinds of fuzzy num-
bers (like triangular fuzzy numbers, trapezoidal fuzzy numbers or left-
right fuzzy numbers) as the parameters of the model to calculate the 
present value of the maintenance costs or other important characteris-
tics of a WDS. This framework can be then applied to other models of 
failure intensities for a WDS. Therefore, we generalize our previous 
considerations from [25] to a more general fuzzy approach including 
new types of fuzzy numbers.

Fourth, apart from the imprecise setting related to fuzzy numbers, 
we apply shadowed sets to describe the parameters of the model. An 
introduction of shadowed sets can be very fruitful because it enables 
us to both consider impreciseness (which is, e.g., related to an ex-
pert’s opinion) and to dramatically limit amount of necessary numeri-
cal simulations to estimate the considered characteristic of the model 
(like the present value of the maintenance costs) in comparison with 
the previously mentioned fuzzy setting. 

Fifth, apart from the theoretical framework for both fuzzy num-
bers and shadowed sets setups, we provide respective numerical al-
gorithms together with examples of numerical simulations based on 
the Monte Carlo approach. Some important measures of a WDS, like 
the present value of the maintenance costs, are approximated using 
fuzzy numbers and shadowed sets. Therefore, apart from a “strict” 
value (related to the core of a fuzzy / shadowed set), an additional 
“imprecise” interval (related to the support of a fuzzy / shadowed set) 
is calculated.

It should be pointed out, that the stochastic model of the inter-
est rate (i.e., the one factor-Vasicek model) is directly embedded into 
our Monte Carlo simulations, as in [26]. To our best knowledge, ap-
plication of the variable interest rate is still a new idea, which is not 
considered in other papers. But there are significant differences in 
outputs (like estimated values of costs of a WDS, see, e.g., [25, 26]), 
between models with a constant yield and with a variable discount 
factor. Therefore the stochastic model of the interest rate should be 
preferred in an estimation of the maintenance costs.

This paper is organized as follows. In Section 2, a new type of a 
U-shaped hazard rate function, which describes times of the failures 
of a connection, is presented. A numerical algorithm for a respective 
density, which is based on this HRF, is also provided. In Section 3 and 
4, a model of maintenance costs for a WDS based on constant and ran-
dom variable costs of repairs and replacements, together with a new 
random distribution for modelling times of repairs and replacements, 
are discussed. Section 5 is devoted to two imprecise settings related 
to fuzzy numbers and shadowed sets. Respective algorithms for these 
setups are also provided there. We illustrate these two approaches in 
Section 6 with examples of numerical analysis using the Monte Carlo 
simulations. The paper is concluded in Section 7.

2. Properties of U-shaped HRF

Let us suppose, that the considered WDS is modelled by a graph 
of connections G. In this graph, each connection (i.e., a pipeline which 
is a part of this WDS) is represented as an edge, and possible sources 
or outflows are denoted by nodes. In the following, we focus only 
on the edges of the graph G, i.e., the connections of the WDS. Let 
us assume, that these connections behave in a statistically independ-
ent way, i.e., time of a malfunction of one pipe does not influence 
the quality and possible malfunctions of other pipes. In the literature, 
multistate systems with embedded dependencies of components are 
also considered (see, e.g., [2]). 

We assume that times of failures for each connection are described 
by a hazard rate function (abbreviated further as HRF) r(x |n )λ , 
which is given by the formula:
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As it is seen in Figure 1, this HRF is a U-shaped function with 
three linear segments, for which:

0a−•	  is a directional component of the descending linear part of 
this HRF (i.e., a left-hand side of this function, for which 
x x∈

 )0, * ),

1a•	  is a directional component of the middle, ascending linear 

part (i.e., when x x x∈
 )0 1

* *, ),

2a•	  is a directional component of the right-hand side, ascending 
linear part (i.e., when *

1 x x≥ ),
0b•	  is related to a vertical shift of the whole HRF,
*
0x•	  and *

1x  are horizontal values of the points, where this HRF 
changes its behaviour,

rα•	  is a parameter of deterioration, which is related to a single, 
previous malfunction of a connection,

rn•	  is number of previous malfunctions of a connection, if there 
were repairs afterwards.

When a connection is replaced with a completely new component, 
then 0rn =  is set. It means that the previously mentioned param-
eter rα  reflects a level of fatigue related to prior malfunctions and 
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repairs (see also [26]). Such an influence of the number of previous 
malfunctions on the current condition of a connection is frequently 
postulated in the literature (see, e.g., [30]). In real-life applications 
the above-mentioned parameters of the HRF (1) should be properly 
adjusted to the existing data, because number of failures varies, e.g., 
in [6], the average rate of failures is reported as values from 2.3 up to 
34.8 (per 100 miles of pipes per a year) depending on a material of 
the considered pipe.

The values *
0x  and *

1x  are connected with three important states 
of a connection (see also, e.g., [4]): its initial burn-in period (after a 
previous repair or just after an installation of a new pipe), a stable 
state (when possible initial problems have passed, so the level of fail-
ures is relatively low) and a wear-out period (when the intensity of 
failures increases with passing time, because of existing problems of 
“old age” of the connection).

This new HRF, which is given by (1), is a more complex, U-
shaped function if it is compared to its previous V-shaped counterpart, 
which was introduced in [26]. Moreover, a new additional state (the 
stable state) can be modelled using (1). Then, this HRF can be used to 
describe the intensity of malfunctions, taking into account three com-
pletely different states of quality of a pipeline and progress of fatigue 
of a connection (which is related to the number of previous repairs 

rn  ). Therefore, this HRF can be better adjusted to real-life data, if 
it is compared to other types of functions discussed in the literature. 
This HRF also meets the requirements concerning functions describ-
ing the intensity of malfunctions (see [30] for additional details).

Fig. 1. Exemplary plot of the introduced HRF

To simplify further formulas, let us assume that:
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In Figure 2, an exemplary plot of the density (3) with the two 
previously mentioned points, where the HRF changes its behaviour  
( * *

0 10.8, 3x x= = , namely), is provided.

Fig. 2. Exemplary plot of the density for the introduced HRF

To simulate random times of malfunctions, it is necessary to pro-
vide a numerically efficient algorithm, which generates random vari-
ables based on (3). It can be done using the composition method and 
the inversion method (see, e.g., [28] for a necessary introduction). If 
the composition approach is applied, then a respective pdf ( )f x  is 
given by:

	 ( ) ( )
1

    i i
i

f x f x p
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= ∑ ,	

where ( )  0if x ≥  is a density and  0ip ≥  is a discrete probability for 
1,2,i = … . In the case of (3), we have:
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Using the inversion method, for ( )1 f x  (if x x∈
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Then, Algorithm 1 can be directly used to simulate times of the 
failures in a numerically efficient way. 

Algorithm 1 (Generation procedure for the HRF)
Input: A set of the parameters of the HRF (1).
Output: A random time of a failure X.

Calculate 1 2 3, ,p p p , which are given by (4);
Generate independent random values , U Y  from the uniform 
standard distribution [ ]0;1U ;

if 1 U p≤

             ( )1
1   X F Y−=  (see (5));

else

       if 2 U p≤

           ( )1
2   X F Y−=  (see (5));

       else

           ( )1
3   X F Y−=  (see (5));

return X

The expected value of the densi-
ty (3) can be numerically computed, e.g., for 

* *
0 1 2 0 0 10.6, 0.2, 0.8, 0.65, 0.5, 10, 0.1, 0 r ra a a b x x nα= = = = = = = =  

we get 4.53037  (about 4.5 years if time unit is assumed to be a year, 
see also values in Table 2) and when one malfunction has happened 

(i.e., for 1rn = ) this value changes to 3.765  (about 3 and 3/4 years).

3. Model of maintenance times

We assume that each connection in time t can be in one of the 
following states: working, under repair, under replacement. We also 
assume that immediately after a failure, the respective connection is 
repaired or replaced by a new one, so there is no waiting time for a 
necessary service.

As it was assumed, working times iWT  (i.e., times between mal-
functions) are iid random variables described by the density (3). In the 
following, repairing times iRT  (times, when a connection is repaired) 
and replacement times iPT  (times, when a connection is replaced 
with a new one) are also modelled by a new kind of a probability 
distribution. 

A replacement of a pipe is related to a deterministic and uncondi-
tional replacement age *P . If the current sum of working and repair-
ing times for the considered connection is larger than *P , i.e.,

	 *

1
     

j

i i
i

WT RT P
=

+ >∑ ,	 (6)

then this connection is replaced with a new one (instead of one more 
repair). Afterwards,   0rn =  is set, so this replacement “clears” a dete-
rioration process of the given pipeline.

To model the mentioned repairing and replacement times we ap-
ply a special distribution related to a decreasing linear intensity func-
tion, i.e.,

	 ( ) [ ]            0,x cx cd if x dλ = − + ∈ ,	

where   0,   0c d> > , and c is its directional component while d is a right-
hand side limit of its support. Then, using (2), the respective density 
is equal to:
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An exemplary plot of this density can be seen in Fig. 3. To simu-
late random values from (7), the inversion method can be directly 
applied, so we get

	 F y d
c

cd cd y− ( ) = − + + −( ) −( )( )1 2 21 2 1 2 1log exp / .    (8)

Then, Algorithm 2 can be used to simulate values of the repair-
ing and the replacement times. In the following, to distinguish pa-
rameters of these two types of services, we use ,R Rc d  (in the case 
of the repairing times) or ,P Pc d  (for the replacement times, respec-
tively). The expected value of the density (7) can be numerically 
calculated, e.g., for 10, 0.014c d= =  we get 0.004666 (i.e., we have 

5 10.013889, 0.0027778
360 360

= = , so d  is about 5 days for 360 days 

calendar, and the expected value is then about 1.68 day, see also val-
ues in Table 2).

Fig. 3.	 Exemplary plot of the density for the repairing and the replacement 
times

Algorithm 2 (Generation procedure for the repairing / replacement 
times)

Input: Parameters ,R Rc d  or ,P Pc d .
Output: A random repairing / replacement time X.

Generate independent random value U  from the uniform standard 
distribution [ ]0;1U ;

( )1   X F Y−=  (see (7));
return X
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To simulate the whole WDS, we assume that its connections behave 
in a statistically independent way. Then, using the MC approach, the 

random times of malfunctions 1 2, , t t … . (which are directly related to 
the working times), together with the repairing and the replacement 

times (i.e., iRT  and iPT ), can be generated.

4. Model of maintenance costs

In the following, the costs of repairs and replacements are esti-
mated using the Monte Carlo (MC) simulations. The Monte Carlo 
approach is applicable if, apart from the considered HRF (1), some 
numerically feasible probability distributions for the repairing times 

iRT  and the replacement times iPT  are also used, like the introduced 
density (7). Because of the MC simulations, there is no need to solve 
complex theoretical formulas to take into account the condition (5).

In this paper, we focus only on the maintenance costs related to 
the replacements and the repairs. Other types of costs (like costs of 
water losses, loss of revenues, etc. – see, e.g., [4, 12, 19]) are com-
monly considered in the literature. Among others, restoration and di-
agnostic costs should be also mentioned. They are very important, 
especially for the long-time horizon of analysis (see, e.g., [26] for an 
additional discussion).

Moreover, we assume that a value of the costs is related to a type 
of service (i.e., if it is a replacement or a repair), length of this service 
and a type of the connection. Therefore we have:

	 cost t cost cost RTj
i R const

j
R Var

j
ti

( ) ( ) ( )( ) = + ( ), , � ,	

where ( )( ) j
icost t  denotes a total sum of costs for the given j-th con-

nection and time it , when a necessary service begins, ( )
,
j

R constcost  is a 
constant value (or a fixed cost, i.e., the value which is independent of 
length of a repair) and ( ) ( ),   .j

R Varcost  is a variable cost of a repair (i.e., 
the value which is related to length of a repair). In the same manner, if 
for a replacement, we have:

	 cost t cost cost PTj
i P const

j
P Var

j
ti

( ) ( ) ( )( ) = + ( ), , .	

In the existing literature, the concept of a variable interest rate, 
which is used to estimate the present value (or the future value, see, 
e.g., [28]) of the maintenance costs, is still rarely used. But, as it was 
pointed out in [25, 26], the obtained results in the case of a variable 
rate significantly differ if they are compared to models with a constant 
yield. It is especially true if a long time horizon T (like 20 or even 50 
years, which are quite common values for real-life WDSs) is taken 
into account. Then, to calculate the present value of the total sum of 
the costs of repairs and replacements, which is given by:

	 ( ) ( )( )( )
,

     j
i

i j
PV cost PV cost t=∑ ,	

the one-factor Vasicek model (see, e.g., [8, 28]) is used to find a dis-
counting factor ( ) .  PV  for each respective cost ( )( ) j

ic t . For this vari-
able interest rate, a value of the interest rate tr  at time t is modelled by:

	 ( ) t t tdr a b r dWσ= − +  ,	 (9)

where tW  is the standard Brownian motion, b characterizes a long 
term mean level (i.e., the trajectory of tr  is directed to b during its 
long run), a reflects the speed of reversion towards b, and σ  is instan-
taneous volatility (variability) of the trajectory related to the random 
component tW . In the MC setting, an iterative scheme for a genera-
tion of increments Δ tr  of the process (9) should be used (see, e.g., [8, 
26] for a more detailed discussion and necessary formulas).

5. Imprecise setting of the model

As it was mentioned in Sec. 1, there are a few important cases, 
when our model can be described in an imprecise way. For example, 
data can be sparse or even unavailable, so to take into account opin-
ions of the experts, the necessary parameters of the model are given 
as imprecise values (like, e.g., “the value of this parameter is about 
5” or “this parameter is relatively low”, see, e.g., [11] for an addi-
tional discussion). This impreciseness can be modelled using various 
types of fuzzy sets (see, e.g., [9, 11, 21, 26, 27, 28] for additional 
discussion) like, e.g., triangular fuzzy numbers (abbreviated further as 
TRFN), left-right fuzzy numbers (LRFN), trapezoidal fuzzy numbers 
(TPFN), interval-valued fuzzy numbers (IVFN), or using another ap-
proach, like shadowed sets (SHS). Of course, fuzzy or shadowed sets, 
which are applied in the considered setting, should be strictly related 
to available data and its interpretation.

In this paper, we further develop our previous works related to the 
fuzzy approach to describe a WDS (see [25, 26]). In the following, 
the whole model of the maintenance costs, together with the param-
eters of the introduced HRF, will be entirely fuzzified. Moreover, we 
also present a completely new approach, which is based on shadowed 
sets. Respective numerical algorithms for both these cases will be also 
provided.

5.1.	 Fuzzy approach

We start with some basic definitions and notation, which will be 
used in this paper. Additional details concerning the fuzzy approach 
can be found in, e.g., [7, 14, 28].

For a fuzzy subset A  of the set of real numbers R, we de-
note by Aµ



 its membership function [ ]: 0,1A Rµ →


 and by 
[ ] ( ){ }: AA x xα µ α= ≥



   the α-level set (or the α-cut) of A  for 

( ]0,1α ∈ . Then [ ]0A  is the closure of the set ( ){ }: 0Ax xµ >


. 
A fuzzy number a  is a fuzzy subset of R for which Aµ



 is a nor-
mal, upper-semicontinuous, fuzzy convex function with a compact 
support. Then for each [ ]0,1α ∈ , the α-level set [ ]a α  is a closed in-
terval of the form [ ] [ ] [ ],L Ua a aα α α =   , where [ ] [ ],L Ua a Rα α ∈  
and [ ] [ ]L Ua aα α≤ .

A left-right fuzzy number (LRFN) is a fuzzy number with the 
membership function of the form:

	 ( )

[ ]

[ ]

[ ]

,  ,

1,  ,

,  ,

0,  

a

x aL x a b
b a

x b c
x

d xR x c d
d c

otherwise

µ

 −  ∈  − 
 ∈= 

−  ∈  − 




,	

where ] [, : 0,1 0,1L R  →   are non-decreasing functions, such that 
( ) ( )0  0 0L R= =  and ( ) ( )1 1  1 L R= = . If both L and R are strictly 

linear functions, then this kind of LRFN is known as a trapezoidal 
fuzzy number (further abbreviated as TPFN), and we have:
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	 ( )

[ ]
[ ]

[ ]

,  ,

1,  ,

,  ,

0,  

a

x a x a b
b a

x b c
x

d x x c d
d c

otherwise

µ

− ∈ −
∈=  − ∈

 −



 .	

This kind of fuzzy number will be further denoted by [ ], , ,a b c d . 
Trapezoidal fuzzy numbers are one of the most commonly used types 
of fuzzy numbers (see, e.g., [9] for additional discussion). A triangular 
fuzzy number (TRFN) is a trapezoidal fuzzy number with its core re-
duced to a single value. Then its membership function has the form:

	 ( )

[ ]

[ ]

,   ,

,   ,

0,  

a

x a x a b
b a
x cx x b c
b a

otherwise

µ

− ∈ −
−= ∈
−







.	

TRFN will be further denoted by [ ], ,a b c . Some examples of the 
mentioned types of fuzzy numbers can be found in Fig. 4.

Fig.4.	 Examples of fuzzy numbers (the left-hand side to the right-hand side: a 
triangular fuzzy number, a trapezoidal fuzzy number, a left-right fuzzy 
number)

Let us assume, that our aim is to calculate the value of a function 
( )f x  for some parameter x , e.g., the present value of the mainte-

nance costs ( )  PV c  depending on the constant cost of repair ( ),
j

R constc . 
To approximate a fuzzy value ( )f x   for a fuzzy pa-
rameter x , two-step procedure (see Algorithm 3) 
is conducted. During the first step, monotonicity of 
( )f x  is checked and a specified value [ ]0,1α ∈  is 

set. If ( )f x  is a non-decreasing function, then for the 

given α , the left endpoint ( )[ ] Lf x α  of the respec-

tive α-level set ( )[ ]f x α

  is approximated using the 

crisp value [ ]Lx α , i.e., ( )[ ] [ ]( ) L Lf x f xα α= . And 

the same applies to the right endpoint ( ) [ ]  Uf x α  and 

[ ]Ux α , i.e., ( )[ ] [ ]( ) U Uf x f xα α= . In contrary, if ( )f x  is a non-

increasing function, first [ ]Ux α , then [ ]Lx α  should be used to eval-

uate the respective α-cut , which is given by ( )[ ] ( )[ ]  ,    L Uf x f xα α   

. Then the same step is repeated for other values of α . Usually, 

we start from 0α =  and end at 1α =  with some fixed increment 
0α∆ > . During the second step, the whole fuzzy number ( )f x   is 

constructed, based on the α-level sets which were previously calcu-
lated. The “missing” α-level sets are directly approximated using re-
spective linear segments between the known α-cuts (see, e.g., [20, 26, 
28] for further discussion). Of course, more complex functions (e.g., 
polynomials) can be also applied, but usually simple linear functions 
are sufficient. Let us illustrate the above procedure with a simple ex-
ample:

Example. Let us suppose, that we are interested in an approximation 
of the maintenance costs ( )  PV c  for a fuzzy value of the constant 
cost of repair ( )

,
j

R constc , i.e., we would like to find  ( )( ),  j
R constPV c . As it 

is easily seen, the respective function is an increasing one in this case. 

Therefore, to find  ( )( ), j
L R constPV c  (or  ( )( ), j

U R constPV c , respectively) 

for the given α , the value ( )
, ,
j

R const Lc  (or ( )
, ,
j

R const Uc , respectively) 
should be applied. And we can start our approximation of the fuzzy 
output using 0α =  with an increment 0.1α∆ =  up to 1α = .

Algorithm 3 (Approximation of the fuzzy output)

Input: A function ( )f x , an increment 0α∆ > .

Output: An approximation of ( )f x  .

0α =

while 1 α ≤  do

Check monotonicity of ( )f x ;

Calculate ( )[ ] ( )[ ]  ,    L Uf x f xα α     using [ ]( ) [ ]( ),L Uf x f xα α   

(if ( )f x  is a non-decreasing function) or [ ]( ) [ ]( ),U Lf x f xα α   
(otherwise);

   α α α= + ∆ ;

Approximate missing values ( )[ ] ( )[ ]  ,    L Uf x f xα α     using linear 
segments;

return ( )f x 

Because in the following we focus on the present value of the 
maintenance costs and its fuzzy counterpart, monotonicity of ( )  PV c  
depending on the considered parameters is summarized in Table 1, 
where a plus sign denotes non-decreasing and a minus sign – a non-
increasing function of the given parameter. However, a similar table 

can be prepared for other kinds of the desired fuzzy output.

5.2.	 Approach based on shadowed sets

We start with some basic definitions and notation, which will be 
used in this paper further on. Additional details concerning shadowed 
sets can be found in, e.g., [10, 21].

Table 1.	 Monotonicity of ( ) PV c  depending on different parameters of the model

Param-
eter 0a 1a 2a 0b *

0x *
1x rα ,R Pc c ,R Pd d

Varia-
ble and 

con-
stant 
costs

Monoto-
nicity - + + + - - + - - +
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A shadowed set (SHS, for short) S  in a universe of discourse 
X is a set-valued mapping [ ]{ }: 0, 0,1 ,1S X →  having the following 
interpretation (see, e.g., [21]):

all elements of •	 X for which ( ) 1S x =  are called a core of the 
shadowed set S  and they embrace all elements that are fully 
compatible with the concepts conveyed by S ,
all elements of •	 X for which ( ) 0S x =  are completely excluded 
from the concept described by S ,
all elements of •	 X for which ( ) [ ]0,1S x = , called a shadow, are 
uncertain.

Then, for a shadowed set S  we have its core (defined by 
( ){ }, 1x X S x∈ = ), the shadow ( ) [ ]{ }, 0,1x X S x∈ =  and the support 
( ){ }, 0cl x X S x∈ ≠ . The usage of the unit interval for the shadow 

shows that any element from the shadow could be excluded or exhibit 
partial membership or could be fully allocated to S  (see, e.g., [10]). 

In the following, we consider shadowed sets defined for real val-
ues only, i.e. when X=R (see Fig. 5 for the respective example). Then, 
a shadowed set will be denoted by [ ]1 2 3 4, , , SHs s s s , where its core is 
given by the interval [ ]2 3,s s , its shadow by ( ) ( )1 2 3 4, ,s s s s∪  and its 
support by [ ]1 4,s s . Shadowed sets are conceptually close to rough 
sets (see, e.g., [21]), i.e. their cores can be treated as the regions whose 
elements belong to the concept under discussion, their shadows – the 
regions, where the membership grade is doubtful, and the outer parts – 
the regions whose elements definitely do not belong to the concept.

Fig. 5. Example of a shadowed set

There exist important links between concepts of a fuzzy set and 
a shadowed set. First, a fuzzy set can be approximated using a shad-
owed set. Based on the initial fuzzy set, a corresponding shadowed 
set, that at the same time captures “the essence” of this fuzzy set, 
reduces computational efforts related to a membership function, and 
simplifies the interpretation, can be constructed. The idea behind this 
approach was discussed in [21]. As he noted “we are usually far more 
confident about assigning values close 1 (thus counting the elements 
in) or 0 (therefore making the corresponding element excluded from 
the concept). On the other hand, the membership values (such as those 
around 0.5) always spark some hesitation and are always more dif-
ficult to place on a simple numeric scale”. Therefore, a shadowed set 
is constructed (induced) from the initial fuzzy set with an elevation of 
some membership values (“close to 1” or “high enough”) and with a 
reduction of others (which are “close to 0” or “low enough”). Then, 
the necessary computational effort related to using the obtained shad-
owed set (instead of its fuzzy counterpart) is reduced, because only 
two “cuts” (instead of the whole [0,1] interval) are used in further cal-
culations. Because this procedure can reduce vagueness, some addi-
tional restrictions are taken into account to maintain its overall value.

In [10], a respective approximation procedure, which is related to 
the optimization of two weighting functions, is introduced. Then, a 
TPFN, which is given by [ ], , ,a b c d , can be approximated by a SHS 
[ ]1 2 3 4, , , SHs s s s  using formulas

	 1 2 3 4
2 2 2 2, , ,  
3 3 3 3 3 3 3 3

b a d cs a s b s c s d= + = + = + = + .	 (10)

Example. Let us suppose, that our TPFN is described by values 
[ ]1,3,4,7 . Then, from (10) we get [ ]1.6667,2.3333,5,6 SH . 

Second, calculation of the value of a function, which is re-
lated to a shadowed set, can be seen as a simplified approach for a 
fuzzy set, or – stated in another way – based on interval calculations. 
Namely, to find a value of a function ( )f S   for some shadowed set S  
we have to take into account only two intervals [ ]1 4,s s  and [ ]2 3,s s  
similarly as for a fuzzy set (but with two α-level sets only, i.e. when 
α=0 and α=1). Then, Algorithm 3 can be directly modified if param-
eters of the considered model are given with shadowed sets instead of 
fuzzy sets. This leads us to Algorithm 4.

Algorithm 4 (Approximation of the shadowed set output)

Input: A function ( )f x .

Output: An approximation of ( )f x  .

Check monotonicity of ( )f x ;

Calculate the core of f  using ( ) ( )3 4,f s f s    (if ( )f x  is a 

non-decreasing function) or ( ) ( )4 3,f s f s    (otherwise);

Calculate the shadow of f  using ( ) ( )1 2 3 4, ,s s s s∪  (if ( )f x  is a 

non-decreasing function) or ( ) ( )4 3 2 1, ,s s s s∪  (otherwise);

return ( )f x 

6. Examples of numerical simulations

After providing the necessary algorithms, we present some exam-
ples based on the Monte Carlo simulations. In the following, numeri-
cal approximations of the present value of the maintenance costs for 
an exemplary WDS for both the fuzzy and the shadowed sets settings 
are discussed. The applied parameters of the considered model can be 
divided into four groups:

parameters of the given type of the connection, which are related 1.	
to the introduced HRF (1), namely * *

0 1 2 0 0 1, , , , , , , r ra a a b x x nα ,
parameters, which depend on the respective con-2.	
nection, and are related to the maintenance costs 

( ) ( ), , , ,,  , . , .R const P const R var P varcost cost cost cost  or the lengths 
of times of necessary services (i.e. repairs and replacements), 
like parameters of the random distributions for iRT  and iPT ,
parameters of the interest rate model, which are related to the 3.	
one-factor Vasicek model (6), i.e. 0, , , r a b σ ,
other parameters, like 4.	 *P  and time range for the whole simu-
lation T.

6.1.	 Numerical analysis for the fuzzy setting

We assume that all the parameters related to the considered HRF 
(1), the costs of the repairs and the replacements, and the length of the 
services are fuzzified, i.e., they are given as triangular or trapezoidal 
fuzzy numbers. Only the parameters of the one-factor Vasicek model 
and the considered times (i.e. *P  and T) are described by crisp (real) 
values. Time is measured in years.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 2, 2020 359

Science and Technology

In the following, we partially use fuzzified versions of parameters 
considered in [26] (see Table 2). As noted in Sect. 2 and Sect. 3, the re-
spective expected value for the period between malfunctions is “about 
4.5 years” and for the time of repair is “about 1.68 days”.

For example, if [ ]0 0.5,0.6,0.65,0.7a = , then the directional com-
ponent of the descending linear part of (1) is described by a TPFN for 
which its core is given by the interval [ ]0.6,0.65  and its support by 
[ ]0.5,0.7 . Therefore, we are completely sure, that the considered val-
ue is in the interval [ ]0.6,0.65  and also “certain to some extent”, that 
this value is in [ ]0.5,0.7 , so this parameter is “about 0.6.0–65 plus 
0.05 /minus 0.1” (for additional remarks concerning the fuzzy scales 
and their interpretation, see, e.g., [15]). And for [ ], 0.5,1,2R constcost =  
we can say, that the constant costs of a single repair are “about 1, 
minus 0.5 (50% of the core value) / plus 1 (100% of the core value)”, 
so this parameter has longer right-hand support. In the same manner, 
if [ ]0.012,0.014,0.016Rd = , then the maximum time of a repair is 
“about 5 days”. The unconditional replacement age *P  is equal to 5 
years, and the time range of the simulations is equal to 50 years, which 
is a value commonly used in real-life applications for other WDS. 

In this example, we use only triangular or trapezoidal fuzzy values 
of the parameters, but more complex types of fuzzy numbers can be 
also applied (like, e.g., LRFNs). However, these two types are the 
most commonly spotted in real-life applications because of their sim-
ple description, together with easy and direct interpretation.

To find fuzzy approximations of the desired output, one mil-
lion Monte Carlo simulations for 10 pipes (which are identical, i.e. 
they have the same parameters) were conducted with the increment  
Δα Ä 0.1α = . Using the rather low-end hardware (i5-7400 3 GHz, 8 GB 
RAM, Win 7 Pro) as for the modern standards and C++ (Visual Studio 
2019), the whole simulation procedure took about 1 hour.

Some examples of the obtained output were summarized in Fig. 
6–9. In Fig. 6 we can find fuzzy approximations of the minimum, 
the mean and the maximum of the costs of the single repair. As 
we can see, these values are described by a TRFN (the minimum) 
or TPFNs (the mean and the maximum), but the mean (given by 
[ ]0.766419,1.32643,1.37307,2.39986 ) has the rather narrow core, 
mainly due to the existing discounting factor. Similar measures for the 
costs of the single replacement are given in Fig. 7. Moreover, fuzzy 
approximations of the means for the costs of the repairs and the re-

placements differ substantially, the first one is lower than the second 
(which is equal to [ ]4.79961,6.83968,6.953,8.95973 ), and they have 
other kinds of skewness. Their relatively wide supports should be also 
noticed.

Table 2. Fuzzy and crisp parameters applied in exemplary numerical simulations

Parameter 0a 1a 2a 0b

Value [ ]0.5,0.6,0.65,0.7 [ ]0.1,0.2,0.3 [ ]0.7,0.8,0.9,1 [ ]0.6,0.65,0.7

Parameter rα *
0x *

1x

Value [ ]0.05,0.1,0.15 [ ]0.4,0.5,0.6,0.7 [ ]9,10,11,12

Parameter Rc Rd Pc Pd

Value [ ]8,10,11,12 [ ]0.012,0.014,0.016 [ ]4,5,6 [ ]0.024,0.026,0.028,0.03

Parameter ,R constcost ,R varcost ,P constcost ,P varcost

Value [ ]0.5,1,2 [ ]50,70,80,100 [ ]4,6,8 [ ]80,90,110,120

Parameter a b 0r σ *P T

Value 0.1 0.05 0.04 0.001 5 50.1

Fig. 6.	 Fuzzy approximations of the minimum (circles), the mean (diamonds), 
and the maximum (rectangles) of the repairs costs

Fig. 7.	 Fuzzy approximations of the minimum (circles), the mean (diamonds), 
and the maximum (rectangles) of the replacements costs
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Another output is shown in Fig. 8, where the fuzzy approximation 
of the average number of the repairs Rx  of the whole WDS is plot-
ted. The obtained LRFN is very close to a TPFN, but clearly differs 

from this kind of fuzzy number because of the visible curvatures of its 
membership function for the left- and the right-hand sides. Moreover, 
its support, which is equal to [154.314 ,  349.395 ], is rather wide, then 
the obtained impreciseness is rather high in this case.

The most important simulation result, i.e. fuzzy approximation 
of the present value of the whole maintenance costs ( )  PV cost , is 
presented in Fig. 9. In this case, we have a fuzzy number that may be 
identified with a TPFN, because no curvatures are clearly visible. The 
obtained fuzzy number has the longer right-hand support (so we can 
expect some costs “on plus” rather than “on minus”), with the core 
given by the interval [ 359.268 , 384.822 ] and the rather wide sup-
port, which is equal to [ 209.44 , 621.271]. Once more, the obtained 
impreciseness for 0α =  is rather high. Clearly, for the given other 
value of α, we can find the respective α-level set of ( ) PV cost , which 
approximates the result as the interval.
Fig. 9.	 Fuzzy approximation of the present value of the maintenance  

costs ( )  PV cost

It may be fruitful to compare the simulation results if one (or 
more) of the important parameters are changed. The whole optimi-
zation procedure can be even applied to minimize the whole main-
tenance costs (see, e.g., [26]). In the following, instead of * 5P = , 
higher value of the unconditional replacement age, which is equal to 
20 years (i.e. * 20P = ) is assumed. Some of the obtained results can 
be found in Fig. 10–11.

As we can see in Fig. 11, for the longer unconditional replacement 
age, the present value of the maintenance costs is highly reduced (to 
a TPFN given by [ ]72.4155,120.987,134.428,222.912 , so even more 
than 65% for some α-cuts). Moreover, the average number of repairs 

(see Fig. 10) is also significantly lower, with the highly reduced length 
of its support (hence, its impreciseness, too).

6.2.	 Numerical analysis in the case of the shadowed sets 

As it was noticed in Sec. 1, it may be fruitful to use a concept 
of shadowed sets instead of fuzzy numbers. First, it may be easier 
for an expert to describe a considered parameter as a set of four val-
ues only, rather than formulate a more complex opinion concerning a 
whole course of a membership function. Second, calculations related 
to shadowed sets are usually easier, if they are compared with numeri-
cal efforts required for fuzzy numbers, because only two levels are 
necessary to obtain the desired output instead of, e.g., twenty α-level 
sets. Hence, only two simulation runs are required instead of twenty 
of them. But the obtained shadowed set still reflects some vagueness, 
which may be expressed as an imprecise opinion of an expert.

In the following, to compare the simulated results for both ap-
proaches, we approximate all fuzzy parameters (see Table 2) using 
shadowed sets and the formulas (10), e.g., we have:

( ) ( ) ( ) ( )0 0.5 3 ,0.5 6 ,0.6 6 ,06.8 3
SH

a =     
,	

 ( ) ( ) ( ) ( )1 0.1 3 ,0.1 6 ,0.2 3 ,0.2 6
SH

a =     
,	 

( ) ( ) ( ) ( )2 0.7 3 ,0.7 6 ,0.9 3 ,0.9 6
SH

a =    , 	

( ) ( ) ( ) ( )0 0.61 6 ,0.7 6 ,0.9 3 ,0.9 6
SH

b =    .

Values of other parameters can be easily computed using (10).
The simulated mean of the costs for single repair is plotted in Fig. 

12, the mean of the costs for a single replacement in Fig. 13, the aver-
age number of repairs Rx  in Fig. 14 and the present value of the main-

Fig. 10.	 Fuzzy approximation of the average number of repairs Rx  for * 5P =  
(years, circles) and * 20P =  (years, rectangles)

Fig. 11.	 Fuzzy approximation of the present value of the maintenance costs 
( )  PV cost  for * 5P =  (years, circles) and * 20P =  (years, rectan-

gles)

Fig. 8. Fuzzy approximation of the average number of repairs Rx
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tenance costs ( ) PV c  in Fig. 15. If they are compared with their fuzzy 
counterparts, wider cores and narrower shadows are clearly visible. 
Therefore, the simulated shadowed sets are different, but still similar 
to the previously obtained fuzzy sets, e.g., now the mean of the sin-
gle repair costs is equal to [ ]0.956047,1.14272,1.71829,2.06055 SH . 
Generally, the areas of values, which are “completely sure”, are wider 
and the areas, which are “doubtful”, are narrower. But their “shapes” 
(i.e. when the left- or the right-hand shadow is wider in comparison 
with its right- or left-hand counterpart) are similar to the respective 
fuzzy outputs. It is especially clearly visible in the case of ( ) PV c  
(compare Fig. 9 with Fig. 15).

Fig. 12. Shadowed set approximation of the mean of the repairs costs

Fig. 13. Shadowed set approximation of the mean of the replacements costs

7. Conclusion

In this paper, a new kind of a hazard rate function for the time be-
tween malfunctions of a pipeline is proposed. This HRF is a U-shaped 
function, which also depends on the number of the previous repairs 
of the given connection. The numerically efficient simulation algo-
rithm for this HRF is also provided. Additionally, times of the mainte-

nance services (i.e. repairs and replacements) are modelled using the 
random distribution with decreasing intensity and finite support. The 
introduced models are then used to approximate the present value of 
the maintenance costs and other important characteristics for a WDS 
in two imprecise settings based on fuzzy numbers and shadowed sets. 
The general framework for these two imprecise setups together with 
the respective numerical algorithms are also discussed. These two ap-
proaches lead us to better incorporation of the experts’ knowledge 
and a more proper, closer to real-life modelling of imprecise param-
eters of the considered model. To calculate the present value of the 
maintenance costs, the one-factor Vasicek model is used, as it doesn’t 
incorporate error appearing in the case of a constant interest rate. The 
numerical examples of the maintenance costs and other important 
characteristics for a WDS are also analysed.
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